# TI MS Tool Установка программного обеспечения

## Оглавление

| 1 | О документе                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                               |
|---|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|   | 1.1 K                                                        | раткая информация о продукте                                                                                                                                                                                                                                                                                                                                                                                            | 4                               |
| 2 | Инстр                                                        | укция по установке                                                                                                                                                                                                                                                                                                                                                                                                      | 6                               |
|   | 2.1 C<br>2.1.1<br>2.1.2<br>2.1.3<br>2.1.4<br>Greenp<br>2.1.5 | истемные требования для использования Продукта<br>Требования к вычислительным и дисковым ресурсам<br>Общие требования по настройке наблюдаемого кластера СУБД Greenplum<br>Требования для работы съёмника Ресурсных групп по настройке СУБД Greenplu<br>8<br>Требования для работы съёмника "Температура данных" по настройке СУБД<br>olum<br>Требования для работы съёмника "Размер данных" по настройке СУБД Greenplu | 6<br>7<br>7<br>8<br>8           |
|   | 2.1.6<br>2.1.7                                               | 8<br>Настройка docker на Windows<br>Шаг 1. Выполнить установку и первичный запуск                                                                                                                                                                                                                                                                                                                                       | 9<br>9                          |
|   | 2.1.8<br>2.1.9<br>2.1.10<br>2.1.11<br>2.1.12<br>2.1.13       | Шаг 2. Опубликовать файл лицензии<br>Шаг 3. Актуализировать конфигурационный файл<br>Шаг 4. Подготовить строку пароля к Greenplum<br>Шаг 5. Рестартовать сервер приложений съёмников<br>Шаг 6. Опубликовать в Greenplum процедуру "Размер данных"<br>Шаг 7. При запуске с контейнером Grafana - открыть дашборд в WebUI Grafan                                                                                          | 11<br>11<br>12<br>13<br>13<br>a |
|   | 2.2 3<br>2.2.1<br>2.2.2                                      | 13<br>апуск и остановка<br>Для ОС Linux<br>Для ОС Windows                                                                                                                                                                                                                                                                                                                                                               | <i>14</i><br>14<br>14           |
|   | 2.3 П<br>2.3.1<br>дашбо<br>2.3.2<br>2.3.3<br>2.3.4<br>2.3.5  | роверка корректности настройки и запуска<br>В случае установки с Grafana - удалось подключиться к Grafana и открыть<br>рд<br>В случае установки с Grafana - в дашборде есть данные<br>Контейнеры стартовали без ошибок<br>Реквизиты доступа тех. пользователя к СУБД Greenplum корректные<br>Для съёмника "Ресурсные группы" - СУБД Greenplum работает в режиме                                                         | 15<br>15<br>15<br>15<br>15      |
|   | ресурс<br>2.3.6<br>обнов<br>2.3.7<br>2.3.8                   | сных групп<br>Для съёмника "Температура данных" - СУБД Greenplum работает с настройкой<br>ления счётчиков для таблиц<br>Приложение работает без ошибок<br>Опубликована валидная лицензии                                                                                                                                                                                                                                | 15<br>16<br>16<br>16            |
|   | 2.4 y<br>2.4.1<br>2.4.2                                      | становка демо-данных<br>Демо-данные съёмника РГ<br>Демо-данные съёмника Температуры данных                                                                                                                                                                                                                                                                                                                              | <i>16</i><br>16<br>18           |
|   | 2.5 y                                                        | становка с подключением внешней инсталляции Grafana<br>становка с подключением к внешней инсталляции                                                                                                                                                                                                                                                                                                                    | 19<br>19                        |
| 3 | Конфи                                                        | игурирование                                                                                                                                                                                                                                                                                                                                                                                                            | 21                              |
| - | 3.1 C                                                        | ъёмники на основе движка "greenplum6"                                                                                                                                                                                                                                                                                                                                                                                   | 21                              |

| 3.1.  | 1 Съёмник "Ресурсные группы"                              |    |
|-------|-----------------------------------------------------------|----|
| 3.1.  | 2 Съёмник "Температура данных"                            |    |
| 3.1.  | 3 Съёмник "Размеры данных"                                |    |
| 3.2   | Съёмники на основе движка "http"                          |    |
| 3.2.  | 1 Съёмник "Метрики РХF"                                   |    |
| 3.3   | Уровень журналирования (логирования)                      |    |
| 3.4   | Реквизиты подключения к БД Продукта                       |    |
| 4 При | іложения                                                  | 32 |
| 4.1   | Пример конфиг-файла на два кластера GP и один кластер PXF |    |

## 1 О документе

Документ содержит описание процесса установки TI MS Tool, включая требования к ресурсам и среду установки, а так же типовые проблемы, их причины и способы решения,

## 1.1 Краткая информация о продукте

Продукт TI MS Tool предназначен для мониторинга состояния и истории работы кластеров СУБД Greenplum (и производных версий СУБД при условии соблюдения совместимости).

Продукт содержит:

- контейнер сервера приложений
- контейнер СУБД PostgreSQL или опционально СУБД Citus
- опционально контейнер Grafana

▲ Grafana не является частью TI MS Tool, распространяется с лицензией AGPL 3 (см. https://github.com/grafana/grafana?tab=AGPL-3.0-1-ov-file#readme). Включенный в архив докер-имидж Grafana может использоваться согласно этой лицензии, включая управление пользователями и русификацию интерфейса Grafana. Полный текст лицензий приведён в файлах каталога ./external/grafana .Доступна настройка одного или нескольких кластеров СУБД Greenplum, с одним или несколькими типами SQL съёмников.

▲ СУБД Citus не является частью продукта TI MS Tool, распространяется с лицензией AGPL 3 (см. https://github.com/citusdata/citus?tab=AGPL-3.0-1-ov-file#readme). Включенный в архив докер-имидж Citus может использоваться согласно этой лицензии. Полный текст лицензий приведён в файлах каталога ./external/citus.

Сервер приложений выполняется работу съёмников данных с заданной регулярностью, и вызов обновления аналитических витрин на основе снятых данных.

Включает группы съёмников:

- ресурсные группы данные настройки ресурсных групп кластера, показатели утилизация ресурсов и обработки запросов к СУБД
- температура данных данные на основе системных счётчиков о характеристиках обращений к таблицам и партициям, кол-ву записей (тьюплов) и времени последнего выполнения VACUUM и ANALYZE
- размеры всех таблиц СУБД (до партиций и субпартиций) по размеру файлов на диске, с показателями перекоса распределения таблиц и характеристиками таблиц
- показатели работы РХF

Продукт предоставляет данные для анализа из ВІ инструментов или через SQL интерфейс, совместим с Grafana. Продукт предоставляет дашборды для публикации в Grafana для визуализации данных Продукта (данных, накапливаемых во внутренней БД TI MS Tool). Перечень дашбордов включает:

- Для ресурсных групп:
  - характеристики утилизации ресурсными группами аппаратных ресурсов серверов кластера (CPU, RAM) на сегментах и на мастере, а также характеристики обработки запросов (кол-во выполняемых запросов, кол-во выполненных запросов, кол-во запросов в очереди ожидания начала выполнения) и т.п.;
  - характеристики утилизации ресурсными группами аппаратных ресурсов серверов кластера (CPU, RAM) на сегментах с разными статистиками по часовым интервалам;
  - о сегменты с отклонением утилизации CPU от среднего по кластеру больше заданного порога (одного среднеквадратичного отклонения).
- Для таблиц и партиций:
  - о инциденты перекоса распределения данных таблиц и партиций
  - о описание таблиц и партиций
  - "температура" таблиц и партиций кол-во сканирований, вставок и удалений строк, кол-во "живых" и удалённых строк, дату-время последнего проведения VACUUM и ANALYSE и т.п.
- Для PXF:
  - характеристики работы РХF в целом история состояния сегментов, утилизация CPU, кол-во подключений и кол-во ошибок
  - характеристики работы хостов РХГ кол-во потоков, утилизация RAM, длительность работы GC
  - о характеристики работы пользователей РХГ кол-во загруженных данных

Продукт так же совместим с СУБД Citus в качестве СУБД для внутренней БД - при работе с большими данными рекомендуется использовать СУБД Citus для повышения быстродействия за счёт использования снижения объёмов хранимых данных в колоночной структуре таблиц, и по необходимости за счёт использования работы СУБД в кластерной конфигурации. Продукт включает скрипты инициализации внутренней БД, совместимой с СУБД Citus.

## 2 Инструкция по установке

## 2.1 Системные требования для использования Продукта

Продукт запускается как комплекс docker контейнеров. На сервере или рабочей станции для работы Продукта требуется установка следующих продуктов:

- docker версии не ниже 20.0.0
- docker-compose версии не ниже 1.27.4

Продукт совместим с СУБД Greenplum 6 (в частности, с версией 6.26) и с СУБД Greenplum 5 (в частности, 5.28).

Проверена совместимость продукта с запуском в следующих операционных системах на процессорах x86:

- Ubuntu 22.04 , 20.4
- PEД OC 7.3
- Windows 10

Проверена совместимость продукта с запуском в следующих операционных системах на процессорах М1 с некоторыми ограничениями (после редактирования файла лицензии или конфига сервер приложений необходимо рестартовать для применения изменений):

• Масоз (протестировано на Sonoma 14.4)

### 2.1.1 Требования к вычислительным и дисковым ресурсам

Минимальные требования к выделяемым аппаратным ресурсам для запуска Продукта:

- дисковое пространство: 75 GB, HDD или SSD (предпочтительно). Размер указан без учёта зеркалирования / дублирования дисков.
- СРU: 5 ядер, более высокая частота оказывает значительное влияние в отличие от добавления кол-ва ядер
- RAM: 3 GB

Минимальные требования рассчитаны исходя из следующих ориентировочных характеристик нагрузки на Продукт:

- Одновременна работа с WebUI Grafana до 3 пользователей с обновлением всех графиков дашборда не чаще каждые 30 секунд
- Мониторинг до 3х кластеров СУБД Greenplum с регулярностью снятия характеристик утилизации СУБД раз в минуту
- Хранение данных в течение до 12 месяцев (хранение истории за 6 мес. и запас по времени работы на плановую архивацию / удаление более старых данных в 5 мес.)
- Суммарное кол-во сегментов в кластерах до 300
- Суммарное кол-во ресурсных групп в кластерах до 15

- Суммарное кол-во атомарных таблиц (кол-во таблиц и кол-во партиций) 100 тыс.
  - о Кол-во не партиционированных таблиц 5000
  - о Кол-во партиционированных таблиц 940
  - о Кол-во партиций 94000
- Постоянное кол-во сегментов с перекосом (более 1 среднеквадратичного отклонения от среднего) до 20

Рекомендуемые требования для работы со среднестатестическими кластерами промышленных кластеров Greenplum:

- дисковое пространство: 100 GB, SSD или NVME (предпочтительно). Размер указан без учёта зеркалирования / дублирования дисков.
- СРU: 6 ядер, более высокая частота оказывает значительное влияние в отличие от добавления кол-ва ядер
- RAM: 8 GB

Рекомендуемые требования для работы со повышенной нагрузкой (кластера Greenplum с более чем 500 млн таблиц и партиций, повышенная частота сбора срезов, кол-во активных пользователей Grafana более 3 и т.п.):

- дисковое пространство: 150 GB, SSD или NVME (предпочтительно). Размер указан без учёта зеркалирования / дублирования дисков.
- СРU: 8 ядер, более высокая частота оказывает значительное влияние в отличие от добавления кол-ва ядер
- RAM: 12 GB

# 2.1.2 Общие требования по настройке наблюдаемого кластера СУБД Greenplum

Для снятия данных необходима учётная запись технологического пользователя, имеющему права на подключение к СУБД и выборку из таблиц системных справочников СУБД (например - к БД Postgres).

Технологической учётной записи должны быть доступны ресурсы для выполнения запроса к системным справочника каждую минуту с возвратом строк по кол-ву ресурсных групп в СУБД, с выполнением 99.5% запросов в пределах 30 секунд (время обработки запроса напрямую влияет на корректность собираемых и анализируемых данных). Рекомендуется выделение учётной записи в отдельную администраторскую ресурсную группу.

Для работы съёмников необходимы доступы к конкретным системным справочникам СУБД Greenplum - они описаны в разделах требований съёмников.

Ниже пример SQL запроса к СУБД Greenplum для создания такого пользователя с необходимыми правами доступа для всех типов съёмников. Значение пароля "ti\_mstool\_pw" из примера необходимо заменить согласно политикам среды использования Продукта:

-- роль и права роли

```
create role ti_mstool_reader_role;
grant connect on database postgres to ti_mstool_reader_role;
-- учётная запись и выдача ей роли
create user ti_mstool_reader with password 'ti_mstool_pw';
grant ti mstool reader role to ti mstool reader;
```

# 2.1.3 Требования для работы съёмника Ресурсных групп по настройке СУБД Greenplum

Подключаемый к Продукту кластер СУБД Greenplum должен быть сконфигурирован для работы с Ресурсными группами (РГ), вместо настройки по умолчанию с Ресурсными Очередями.

Выделение СРU для PГ должны быть настроены через параметр cpu\_rate\_limit, без использования выделения конкретных ядер CPU настройкой cpuset.

Необходимы права на select из системных справочников (права на select к системным справочникам выдаются по умолчанию), пример выделения прав:

```
grant select on gp_toolkit.gp_resgroup_config, gp_toolkit.gp_resgroup_status to
ti mstool reader role;
```

### 2.1.4 Требования для работы съёмника "Температура данных" по настройке СУБД Greenplum

Необходимо чтобы был включен сбор системных статистик для таблиц (включено по умолчанию). Регулируется настройкой "track\_counts", значение должно быть "on". Изменение настройки доступно только суперпользователям.

Необходимы права на select из системных справочников (права на select к системным справочникам выдаются по умолчанию), пример выделения прав:

```
grant select on pg_stat_user_tables, pg_catalog.pg_partitions , pg_catalog.pg_partition to
ti_mstool_reader_role;
```

2.1.5 Требования для работы съёмника "Размер данных" по настройке СУБД Greenplum

Подсчёт размера данных выполняется с использованием пользовательской процедуры. Процедуру необходимо зарегистрировать в наблюдаемой БД в СУБД Greenplum от имени пользователя, имеющего права на создание external web table и обращение к операционной системе для получения информации о размере файлов данных СУБД Greenplum на мастере и на сегментах.

Процедуры (основная и вспомогательные) размещается в каталоге дистрибутива Продукта, файл "./resources/gp6/07.3.extractor-dataSize.gp-sp.sql". Функция совместима и с Greenplum 5 старших подверсий, и с Greenplum 6.

Необходимы права на выполнение созданных функций:

```
grant execute on function public.ti_size_n_skew_core(p_out_common text, p_included text[],
p_excluded text[])to ti_mstool_reader_role;
grant execute on function public.ti_size_n_skew_core_res(p_included text[], p_excluded
text[]) to ti_mstool_reader_role;
grant execute on function public.ti_size_n_skew() to ti_mstool_reader_role;
grant execute on function public.ti_size_n_skew(p_included text)to ti_mstool_reader_role;
grant execute on function public.ti_size_n_skew(p_included text[]) to ti_mstool_reader_role;
grant execute on function public.ti_size_n_skew(p_included text[])to ti_mstool_reader_role;
grant execute on function public.ti_size_n_skew(p_included text[]) to ti_mstool_reader_role;
grant execute on function public.ti_size_n_skew(p_included text[], p_excluded text[])to
ti_mstool_reader_role;
```

## 2.1.6 Настройка docker на Windows

Для работы продукта на OC Windows требуется настройка docker и docker-compose с WSL2. Текущие версии Docker Desktop требуют версии Windows 10 или Windows 11.

В случае если при установке Docker Desktop выдаётся сообщение о не выполнении минимальных требований - необходимо проверить версию Windows. Возможно, потребуется установка более старого дистрибутива Docker Desktop - в случае невозможности выполнения требований для установки актуальной версии.

Так версия Docker Desktop 4.30.0 требует от Windows 10 версии 21Н1 не ниже 19044, в том время как более ранняя версия 4.24.0 работает с более поздней версией 19043.

Кроме того, для работы Docker Desktop на Windows потребуется WSL2, обновление WSL выполняется штатно следующим вызовом:

wsl --update

Штатное обновление WSL до WSL2 может занимать длительное время - до нескольких часов.

После завершения установки потребуется выполнить запуск Docker Desktop.

Дистрибутив представляет из себя архив ti-mstool-VERSION.tar (с указанием значения версии вместо VERSION).

Для установки необходимо выполнить следующие шаги:

- Шаг 1. Разархивировать файл архива (как zip архив) в целевой каталог и выполнить установку продукта, при этом выполняется запуск компонентов и инициализация внутренней БД.
- Шаг 2. Разместить валидную лицензию (скопировать содержимое файла лицензии или сам файл).
- Шаг 3. Актуализировать конфигурационный файл указать реквизиты подключения к наблюдаемой СУБД Greenplum и ID для этого кластера, хосты PXF.
- Шаг 4. Подготовить строку с паролем учётной записи для подключения к СУБД Greenplum в зашифрованном виде, и указать эту строку в конфигурационном файле в реквизитах подключения к СУБД.
- Шаг 5. Рестартовать приложение для актуализации конфига.
- Шаг 6. Для работы съёмника "Размер данных" необходимо опубликовать пользовательскую процедуру в СУБД Greenplum.

По окончанию выполнения шагов проверить начало работы продукта - по журналу работы контейнера сервера приложений или по содержимому лог-файла сервера приложений.

В случае развёртывания продукта с Grafana - открыть WebUI Grafana и проверить отображение данных в дашбордах.

#### 2.1.7 Шаг 1. Выполнить установку и первичный запуск

В примерах ниже приведены команды для установки условной версии 0.0.0-0.

### 2.1.7.1 Ha Linux

Распаковать архив дистрибутива в заданный каталог.

Например, с установкой Продукта в подкаталог /opt - следующими командами, находясь в каталоге с файлом дистрибутива (включает создание каталога в /opt):

```
export VERSION=ti-mstool-0.0.0-0
sudo mkdir /opt/${VERSION}
sudo tar -xvzf ./${VERSION}.tar -C /opt/${VERSION}
sudo chmod 777 -R /opt/${VERSION}
cd /opt/${VERSION}/ti-mstool
```

Для установки и запуска выполнить команду установки install и выбрать конфигурацию установки:

- 1) MSTool+Postgres+Grafana" все компоненты, с внутренней БД на Postgres
- 2) MSTool+Postgres" без визуализации в Grafana (возможно подключение внешней инсталляции Grafana, см. 2.5), с внутренней БД на Postgres
- 3) MSTool+Citus+Grafana" все компоненты, с внутренней БД на Citus
- 4) MSTool+Citus" без визуализации в Grafana Grafana (возможно подключение внешней инсталляции Grafana, см. 2.5), с внутренней БД на Citus
- 5) MSTool+Grafana" приложение для работы ожидает подключение внешней СУБД для управления внутренней БД (см. 2.6 для подключения к СУБД Citus)
- 6) Только MSTool приложение для работы ожидает подключение внешней СУБД для управления внутренней БД (см. 2.6 для подключения к СУБД Citus)

В частности, для быстрого выполнения установки с PostgreSQL и Grafana выбрать вариант 1:

```
sudo ./ti-mstool-linux.sh install
Выберете вариант установки (введите цифру и подтвердите выбор при помощи Enter).
Для выхода без установки нажмите любую клавишу (кроме вариантов выбора), затем Enter.
1) MSTool+Postgres+Grafana 4) MSTool+Citus
2) MSTool+Postgres 5) MSTool+Grafana
3) MSTool+Citus+Grafana 6) Только MSTool
```

В рамках установки выполняется загрузка докер-имиджей, создание докер-сети и запуск работы всех компонентов в фоновом режиме. Для проверки того, что установка и запуск выполнены, можно проверить наличие контейнеров командой 'docker stats', в консоли должны отобразиться контейнеры обязательно включая mstool-app.ti-mstool.

При развёртываний Продукта с контейнером СУБД Citus или СУБД PosgreSQL - должен появиться контейнер postgres.ti-mstool.

При развёртываний Продукта с контейнером Grafana - должен появиться контейнер grafana.ti-mstool.

Проверку последующих шагом можно отслеживать по логу работы контейнера mstoolapp.ti-mstool, для этого в отдельном терминале необходимо открыть его вывод в режиме отслеживания новых строк:

sudo docker logs -f mstool-app.ti-mstool

Либо просмотром лог-файла (в режиме мониторинга с выводом новых строк) следующей командой:

tail -n 100 -f ./mnt/mstool-app/logs/mstool-app-stdout-stderr.log

#### 2.1.7.2 Ha Windows

Распаковать архив дистрибутива - ниже описан вариант распаковки в Windows 10 для условного дистрибутива версии 0.0.0-0.

Для распаковки со штатным 7-zip архиватором Windows 10+ файл необходимо переименовать, добавив в конец расширение ".zip"

В Explorer в контекстном меню выбрать "7-Zip" и в подменю "Распаковать в "ti-mstool-0.0.0-0.tar\". Появится файл .tar - для него повторить процедуру, указав распаковку в каталог "ti-mstool-0.0.0-0\". В том же каталоге появится каталог "ti-mstool-0.0.0-0" с подкаталогом "ti-mstool", содержащим файлы продукта - каталогом установки считается "ti-mstool-0.0.0-0/ti-mstool".

#### 2.1.8 Шаг 2. Опубликовать файл лицензии

Единовременно активной у инсталляции продукта может быть только одна версия лицензии. В случае отсутствия валидной лицензии функции по снятию и трансформации данных недоступны.

Актуальная лицензия должна быть размещена в файле с названием ./ti-mstool/config/ license.json (в контейнере этот файл подключается в контейнер в /usr/app/resources/license/license.json). Единовременно активной у инсталляции продукта может быть только одна версия лицензии (один файл).

В случае отсутствия валидной лицензии функции Продукта по снятию и трансформации данных недоступны. Ограничения лицензии указаны в файле лицензии в человеко-читаемом виде и удостоверяются подписью.

Проверить наличие корректно настроенной валидной лицензии и наличие в ней ограничений можно следующим вызовом:

sudo ./ti-mstool-linux.sh license

В случае отсутствия лицензии или ограничении времени её действия будут выведены соответствующие сообщения.

Пример ответа о действующей лицензии

Result -> License is valid

Пример ответа об отсутствии валидной лицензии, с уточнением причины (в примере - подпись не валидна)

```
Stage->Load from "./resources/license/license.json"Error->License signature is not validResult->The license is not valid
```

Если лицензия не валидная - контейнер приложения в docker-compose не останавливает работу, но работа съёмников приложения останавливается.

#### 2.1.9 Шаг З. Актуализировать конфигурационный файл

Настройка сервера приложений Продукта осуществляется через конфигурационный файл ./ti-mstool-bundle/ti-mstool/config/config.json

Конфиг файл в формате текстового JSON файла, включает описание объекта настроек с несколькими группами параметров, см. п. 2.5

В случае если файлы лицензии и/или конфига не менялись в режиме редактирования, а переносились / пересоздавались - необходимо выполнить рестарт приложения (остановку и запуск).

Пример конфиг-файла для одного условного кластера Greenplum (с мастер-сервером "10.20.0.10") и хостов РХГ (развёрнутого на двух хостах "10.20.0.11" и "10.20.0.12"), со всеми съёмниками и настройками по умолчанию, конфиг файл будет выглядеть следующим образом, с точностью до значений паролей:

```
"traceLevel": 2,
"greenplum6": {
        "gp6-1-dbms": {
                 "connection": {
                          "port": 5432,
                         "host": "10.20.0.10",
                          "db": "dbdemo",
                          "user": "userdemo",
                         "password": "xxx"
                 },
                 "additionalData": {
                          "cluster_id": "gp6-1"
                 "extractors": [ "resourcesGroup", "dataTemperature", "dataSize"]
        }
},
"http": {
        "gp6-1-pxf": {
                 "connection": [
                         { "host": "10.20.0.11", "port": 5888 },
{ "host": "10.20.0.12", "port": 5888 }
                 1,
                 "additionalData": {
                          "cluster id": "gp6-1"
                 "extractors": "pxfPrometheus"
        }
},
"mstoolDb": {
        "port": 5432,
        "host": "postgres.ti-mstool",
        "db": "ti mstool db",
        "user": "ti_owner",
"password": "yyy",
        "timeout": 1200
}
```

Значение пароля для СУБД Greenplum необходимо указать в зашифрованном виде, описание подготовки выполняется на шаге 4.

Значение пароля для внутренней БД ("mstoolDb.password") должно быть указано корректно в исходном файле из дистрибутива, в случае замены логина или пароля для доступа пароль необходимо подготовить аналогично паролю доступа к СУБД Greenplum.

## 2.1.10Шаг 4. Подготовить строку пароля к Greenplum

Пароли в конфиг-файле сервера приложений (для подключения к СУБД Greenplum и к внутренней БД) хранятся в конфигурационном файле в зашифрованном виде. Пароль в зашифрованном виде необходим для подготовки конфига. Для получения значения пароля необходимо вызвать следующую команду:

```
sudo docker exec mstool-app.ti-mstool ./mstool-app --password-encode ti_mstool_password
Original password -> ti_mstool_password
```

```
Encrypted password ->
3ddcbe12662028e406b50ddf2fdb7343d915950adcfde0a33aa7914dcf86e1b163b0c5530ec92b720c2fe4ec8f2a9
8e2c0e357172aa4
```

Значение, выведенное в консоль после строки " Encrypted password -> " содержит строку, которую необходимо указать в конфиге в качестве пароля (пароль не содержит пробелов или табуляторов).

В случае если технологическая учётная запись в СУБД Greenplum ещё не создана, описание её подготовки приведено в п. 2.1.2

### 2.1.11Шаг 5. Рестартовать сервер приложений съёмников

При запуске в OS на процессорах x86, в случае если изменения вносились в файлы напрямую - без замены файлов, сервер приложений автоматически должен определить, что файл был изменён и вызвать ре-инициализацию.

Для рестарта штатным способом является вызвать остановку и запуск приложения целиком:

```
sudo ./ti-mstool-linux.sh stop
sudo ./ti-mstool-linux.sh start
```

### 2.1.12Шаг 6. Опубликовать в Greenplum процедуру "Размер данных"

Для работы съёмника "Размер данных" необходимо опубликовать пользовательскую функцию в наблюдаемые БД в СУБД Greenplum, см. 2.1.5

# 2.1.13Шаг 7. При запуске с контейнером Grafana - открыть дашборд в WebUI Grafana

Grafana не является часть Продукта, распространяется с лицензией AGPL 3, запуск в конфигурации с контейнером Grafana автоматически выполняет настройку источника данных к БД TI MS Tool и выполняется публикацию дашбордов. В случае развёртывания с подключением сторонней инсталляции Grafana необходимо выполнить настройку источника данных (СУБД Postgres) и публикацию дашбордов самостоятельно, см. 2.5

Открыть броузер и в нём открыть страницу с адресом "http://{ИМЯ ИЛИ АДРЕС СЕРВЕРА УСТАНОВКИ}:3000", в случае если вход осуществляется на локально развёрнутое приложение (например на ноутбуке), вместо имени или адреса можно указать строку "localhost".

По умолчанию при инициализации Grafana создаётся учётная запись grafana с таким же паролем, с правами администратора. При необходимости создания пользователей с ограниченными правами (только на чтение) - необходимо выполнить настройки (регистрацию пользователей, интеграцию с внешними системами для проверки аутентификации и авторизации) с использованием штатных возможностей продукта Grafana.

При успешно выполненной инициализации Grafana после успешного входа откроется страница дашбордов, для проверки начала работы можно открыть дашборд "MS Tool ресурсные группы" с характеристиками работы ресурсных групп, пример см. рис. 1

| w                                                                                                                                | Q Search or jump to                          | Ⅲ %+k                       |                                                  |               | + - 0      | » n  |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------|--------------------------------------------------|---------------|------------|------|
|                                                                                                                                  |                                              |                             |                                                  | ☆             | Share Edit | _ ^  |
| Кластер ОР         gp6-1         Ресурсная группа         Аll ×         ×         Час суток         Аll ×         ×         День | недели All × × ×                             |                             | < (2) 13.03.2025 21:32:36 to 13.03.2025 21:41:43 | ~             | 😋 Refresh  | 1m ~ |
| > Concurrency - запросы в очереди на выполнение (3 panels)                                                                       |                                              |                             |                                                  |               |            |      |
| > Concurrency - запросы выполняемые (3 panels)                                                                                   |                                              |                             |                                                  |               |            |      |
| <ul> <li>Кол-во выполненных запросов</li> </ul>                                                                                  |                                              |                             |                                                  |               |            |      |
| Количество выполненных запросов по суткам Количество выполненных зап                                                             | просов по часу суток                         | Кол-во выполненных запро    | сов (по показателю накопленным итогом) 🕕         |               |            |      |
| 1.75 K 100 K                                                                                                                     |                                              | 1                           |                                                  |               |            |      |
| 1.50 K 0.8                                                                                                                       |                                              | 0.8                         |                                                  |               |            |      |
| 1.25 K 0.6                                                                                                                       |                                              | 0.6                         |                                                  |               |            |      |
| 750                                                                                                                              |                                              |                             |                                                  |               |            |      |
| 500 0.4                                                                                                                          |                                              | 0.4                         |                                                  |               |            |      |
| 250 162 0.2                                                                                                                      |                                              | 0.2                         |                                                  |               |            |      |
| 0<br>06.03.2025 09.03.2025 12.03.2025 0                                                                                          |                                              |                             |                                                  |               |            |      |
| - admin_group - default_group - etl_daily - etl_wm 00 01 02 03 04 05 06 07 08                                                    | 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | 21:33:00 21:34:00           | 21:35:00 21:36:00 21:37:00 21:38:00 21:          | 39:00 21:40:0 | 0 21:41:00 |      |
| general — top — admin_group — default_group                                                                                      | p — eti_daily — eti_wm — general — top       | - admin_group - default_gro | up — etl_daily — etl_wm — general — top          |               |            |      |
| > Утилизация CPU на сегментах (3 panels)                                                                                         |                                              |                             |                                                  |               |            |      |
| > Утилизация RAM на сегментах (3 panels)                                                                                         |                                              |                             |                                                  |               |            |      |
| > Утилизация CPU на мастере (3 panels)                                                                                           |                                              |                             |                                                  |               |            |      |
| Утилизация RAM на мастере (3 panels)                                                                                             |                                              |                             |                                                  |               |            |      |

рис. 1 Пример дашборда "Ресурсные группы" с поступающими данными

## 2.2 Запуск и остановка

## 2.2.1 Для OC Linux

Первичный запуск выполняется сразу после установки docker компонент следующим вызовом, Он выполняет регистрацию докер-имиджей из файлов дистрибутива, создаёт докер-сеть. Вызовы выполняются в каталоге Продукта.

sudo ./ti-mstool-linux.sh install

Запуск в дальнейшем можно так же выполнять этим вызовом:

sudo ./ti-mstool-linux.sh start

Проверить работу контейнеров и утилизация ими ресурсов следующей командой - она покажет обновляемое состояние по выполняемым контейнерам:

sudo docker stats

Для проверки лога работы основного контейнера - сервера приложений - выполнить вывод лога контейнера на отдельный экран терминала в режиме отслеживания новых строк:

sudo docker logs -f mstool-app.ti-mstool

либо просмотреть содержимое лог-файла

tail -n 100 -f ./mnt/mstool-app/logs/mstool-app-stdout-stderr.log

Остановка выполняется вызовом stop:

sudo ./ti-mstool-linux.sh stop

#### 2.2.2 Для OC Windows

До запуска продукта требуется настройка работы docker и docker-compose, см. 2.1.4

Все шаги установки / запуска / остановки / удаления аналогичны запуску под Linux с отличием в вызовах команд скриптом ti-mstool-windows.bat вместо ti-mstool-linux.sh и все вызовы без sudo.

То есть вместо

sudo ti-mstool-linux.sh

#### вызывать

ti-mstool-windows.bat

#### 2.3 Проверка корректности настройки и запуска

## 2.3.1 В случае установки с Grafana - удалось подключиться к Grafana и открыть дашборд

WebUI интерфейс Grafana доступен на сервере установки Продукта на порту 3000 по умолчанию, в штатном режиме работы в броузере по адресу сервера на указанном порту должна открываться страница Grafana для ввода логина и пароля пользователя.

После ввода логина и пароля пользователя необходимо открыть дашборд "MS Tool ресурсные группы".

#### 2.3.2 В случае установки с Grafana - в дашборде есть данные

При выборе периода включая текущее время должны появиться значения в контроле фильтра с идентификаторами кластеров, и данные по выбранному кластеру в графиках.

Признаком успешной настройки является появление в дашборде данных в графиках за последние 5 минут, при учёте работы продукта не менее 2х минут (за это время должна успеть выполниться итерация снятие данных с СУБД Greenplum).

#### 2.3.3 Контейнеры стартовали без ошибок

#### Проверить отсутствие ошибок в консоли контейнеров

./ti-mstool-linux.sh logs

Или альтернативно - через обращение к docker-compose

sudo docker-compose -f ./docker/dc-active-deploy.yml logs -f

#### 2.3.4 Реквизиты доступа тех. пользователя к СУБД Greenplum корректные

Удаётся подключиться к СУБД с реквизитами СУБД Greenplum, указанными в настройках сервера приложения Продукта в регистрации для СУБД Greenplum, и SQL запросы к таблицам системных справочников выполняется без ошибки:

select rsgname from gp\_toolkit.gp\_resgroup\_status ;

# 2.3.5 Для съёмника "Ресурсные группы" - СУБД Greenplum работает в режиме ресурсных групп

Признаком того, что СУБД Greenplum работает в режиме ресурсных групп (а не ресурсных очередей) является не пустой результат запроса к таблице системного справочника ресурсных групп (использовать для подключения любой SQL клиент), см. пункт выше.

select rsgname from gp\_toolkit.gp\_resgroup\_status ;

Как альтернатива - проверить настройки в Greenplum, например (при наличии доступа на cepвep Greenplum) проверить значение настройки (у мастера и сегментов должны быть значение "group"). С доступом через SQL интерфейс с подключением по JDBC:

show gp\_resource\_manager ;

или

select current\_setting('gp\_resource\_manager');

#### С доступом к хосту СУБД:

gpconfig -s gp\_resource\_manager

# 2.3.6 Для съёмника "Температура данных" - СУБД Greenplum работает с настройкой обновления счётчиков для таблиц

Признаком того, что СУБД Greenplum работает с настройкой ресурсных групп является изменение счётчиков по используемым таблицам / партициям, которые возвращаются запросом:

gp\_dist\_random('pg\_stat\_user\_tables')

Обновление счётчиков таблиц включено по умолчанию, проверить значение настройки можно следующим образом (должно быть значение "on"). С доступом через SQL интерфейс с подключением по JDBC:

show track\_counts;

или

select current\_setting('track\_counts');

#### 2.3.7 Приложение работает без ошибок

В случае ошибок настройки приложения (например недоступности сервера СУБД Greenplum кластера, отсутствие валидной лицензии) в лог приложения выводятся ошибки.

Признаком успешной настройки и подключения является отсутствие ошибок в журнале работы приложения в течение 3х минут - на примере работы SQL съёмника по Ресурсным группам.

#### 2.3.8 Опубликована валидная лицензии

Публикация и проверка лицензии описаны в п. Шаг 2

#### 2.4 Установка демо-данных

#### 2.4.1 Демо-данные съёмника РГ

В демонстрационных целях продукт может быть инициализирован с демо-данными, позволяющими продемонстрировать работу кластера на сэмулированных данных 2х кластеров.

Для демонстрационных целей не требуется настройка конфига и лицензия достаточно распаковать дистрибутив и выполнить установку и первичный запуск.

Для выполнения установки и запуска продукта достаточно выполнить генерацию демо-данных. По умолчанию данные генерируются за период в один месяц Январь текущего года, но период может быть настроен непосредственно в скриптегенераторе.

Запуск генерации данных выполняется следующим вызовом:

sudo docker exec postgres.ti-mstool psql -U ti\_owner -d ti\_mstool\_db -f /docker-entrypointinitdb.d/demo-data/05.20.demo-data-resourceGroups.sql

Выполнение занимает некоторое время (минуты), при штатном выполнении в консоль должны последовательно быть выведены сообщения с подобным содержанием:

```
You are now connected to database "ti mstool db" as user "ti owner".
[2024-07-11 14:04:04.475] Call data emulation for resource group extractor,
ti_mstool_db.sp_emul_rg [ 2024-01-01 00:00:00.000, 2024-02-01 00:00:00.000 ], 8 segments
table "temp_dict_resource_groupes" does not exist, skipping
                              _____
[2024-07-11 14:05:40.606] --- done -----
[2024-07-11 14:05:40.684] call ti_mstool_db.sp_dm_rg_hourly_upsert( gp-demo-2, 2024-01-01
00:00:00, 2024-01-31 23:59:00 )
[2024-07-11 14:07:00.855] call ti mstool db.sp dm rg minutly upsert( gp-demo-2, 2024-01-01
00:00:00, 2024-01-31 23:59:00 )
[2024-07-11 14:16:43.373] call ti_mstool_db.sp_dm_rg_skew_segments_upsert( 2024-01-01
00:00:00, 2024-01-31 23:59:00, gp-demo-2)
[2024-07-11 14:16:51.545] done
[2024-07-11 14:16:51.819] call ti_mstool_db.sp_dm_rg_hourly_upsert( gp-demo-1, 2024-01-01
00:00:00, 2024-01-31 23:59:00 )
[2024-07-11 14:17:17.274] call ti mstool db.sp dm rg minutly upsert( gp-demo-1, 2024-01-01
00:00:00, 2024-01-31 23:59:00 )
[2024-07-11 14:25:08.962] call ti_mstool_db.sp_dm_rg_skew_segments_upsert( 2024-01-01
00:00:00, 2024-01-31 23:59:00, gp-demo-1 )
[2024-07-11 14:25:13.677] done
```

При развёртывании дашбордов в Grafana для проверки успешности - необходимо открыть дашборд за период генерируемых данных, графики должны быть заполнены, пример см. рис. 2



рис. 2 Пример дашборда со сгенерированными демо-данными

## 2.4.2 Демо-данные съёмника Температуры данных

Генерация демо-данных по съёмнику температуры данных формирует данные по демо-кластеру с ID "demo-temperature-01" за период с 2025-01-01 по 2025-03-01.

Для партиционированных записей считается, что последняя партиция - текущий месяц, при заполнении истории в партициях, которые относительно отчётного момента находятся в будущем периоде, заполняются пустым значениями (нет активностей).

#### Эмулируются данные для четырёх таблиц, см. Таблица 1

| Таблица               | Описание                                                                                                                                                                                                                                          | Операции ежедневно                                                                                                                                                                                                               |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| schema02.table01_part | Партиционированная, 12 месячных партиций.<br>Профиль операций - только вставки и<br>выборки, без изменения данных. Нормальный<br>перекос.<br>Активность в последние две партиции 100%,<br>далее утихает до 10го месяца, после чего<br>обнуляется. | Селекты от 1000 до 3000<br>Вставки записей от 10000 до 25000<br>Перекос от 0.05 до 0.1<br>Без выполнения VACUUM и ANALYZE                                                                                                        |
| schema02.table02_part | Партиционированная, 5 партиций.<br>Профиль операций - смешанный, вставки,<br>выборки, обновления и удаления. Большой<br>перекос.<br>Активность в последние 4 месяцев 100%,<br>пятый 80%.                                                          | Селекты от 100 до 300<br>Вставки записей от 300 до 650<br>Обновления записей от 100 до 250<br>Удаления записей от 300 до 650<br>Перекос от 0.1 до 0.3<br>Выполнение VACUUM каждый 3й день<br>Выполнение ANALYZE каждый 5й день   |
| schema01.table01      | Не партиционированная.<br>Профиль операций - только вставки и<br>выборки, без изменения данных. Нормальный<br>перекос.                                                                                                                            | Селекты от 1000 до 3000<br>Вставки записей от 10000 до 25000<br>Перекос от 0.07 до 0.11<br>Без выполнения VACUUM и ANALYZE                                                                                                       |
| schema01.table02      | Не партиционированная.<br>Профиль операций - смешанный, вставки,<br>выборки, обновления и удаления. Большой<br>перекос.                                                                                                                           | Селекты от 100 до 300<br>Вставки записей от 300 до 650<br>Обновления записей от 100 до 250<br>Удаления записей от 300 до 650<br>Перекос от 0.02 до 0.25<br>Выполнение VACUUM каждый 3й день<br>Выполнение ANALYZE каждый 5й день |

Таблица 1 Описание эмулируемых демо-таблиц для Температуры данных

Вызов генерации выполняется следующей командой:

sudo docker exec postgres.ti-mstool psql -U ti\_owner -d ti\_mstool\_db -f /docker-entrypointinitdb.d/demo-data/06.12.demo-data-dataTemperature.sql

При штатном выполнении генерации демо-данных и витрин на их основе, в логе должны быть выведены сообщения подобные следующим:

## 2.5 Установка с подключением внешней инсталляции Grafana

При установке Продукта с внешней инсталляцией Grafana в ней необходимо выполнить настройку источника к внутренней БД Продукта и опубликовать дашборды Продукта.

При регистрации и настройке источника необходимо:

- выбрать тип PostgreSQL
- указать хост и порт развёртывания внутренней БД Продукта:
  - в случае использования конфигурации с БД в контейнере сервер установки Продукта и порт (по умолчанию 10432), логин ti\_grafana и пароль (по умолчанию ti\_grafana)
  - о в случае использования внешней инсталляции СУБД указать актуальные хост, порт, логин и пароль

Установка дашборда Grafana выполняется штатным методом публикации дашборда в WebUI Grafana. Для этого под учётной записью Grafana с административными правами необходимо выполнить следующие шаги:

- находясь на стартовой странице Grafana в меню, выбрать "Dashboards"
- на странице "Dashboards" после нажатия на кнопку "New" в правом верхнем углу страницы, в выпадающем списке выбрать "Import"
- нажав левой кнопкой мыши на "Upload dashboard JSON file" выбрать импортируемый файл, например "MS Tool resource groups.json". Либо перенести этот файл методом "drag and drop" из файлового приложения в область страницы с указанным названием.
- по необходимости изменить название дашборда (в поле Name) и его ID (в полей Unique identifier (UID)) но в этом случае могут перестать работать ссылки между дашбордами
- в выпадающем списке "PostgreSQL" выбрать название "PostgreSQL" в качестве зарегистрированного в Grafana источника данных

При переустановке дашборда предыдущую версию необходимо удалить

## 2.6 Установка с подключением к внешней инсталляции

При запуске установки утилитой включая СУБД как контейнер, инициализация БД выполняется автоматизировано.

При подключении TI MS Tool к внешней инсталляции СУБД Citus необходимо выполнить инициализацию самостоятельно. Для этого необходимо используя файлы из каталога ./ti-mstool-bundle/ti-mstool/resources/citus:

- создать СУБД, роль и пользователей БД см. файлы:
  - o 01.00.citus-init-db.ddl.sql
  - o 01.01.citus-init-schema.ddl.sql
- создать структуру таблиц, включая права доступа, и функции с процедурами последовательно все файлы, начиная с 02.02.citus-init-db.sp.sql (исключая 02.01.citus-init-extension.sql с инициализацией расширения citus для СУБД PostgreSQL)
- указать актуальный адрес и порт подключения в конфигурационном файле в разделе подключения внутренней БД, см. 3.4
- в случае изменения логина или пароля пользователя необходимо указать актуальные значения в конфигурационном файле в разделе подключения внутренней БД, см. 3.4

При подключении TI MS Tool к внешней инсталляции СУБД PostgreSQL необходимо выполнить инициализацию самостоятельно. Для этого необходимо используя файлы из каталога ./ti-mstool-bundle/ti-mstool/resources/postgres:

- создать СУБД, роль и пользователей БД см. файлы:
  - o 01.00.postgresql-init-db.ddl
  - o 01.01. postgresql-init-schema.ddl.sql
- создать структуру таблиц, включая права доступа, и функции с процедурами последовательно все файлы, начиная с 02.01.postgres-init-db.sql
- указать актуальный адрес и порт подключения в конфигурационном файле в разделе подключения внутренней БД, см. 3.4
- в случае изменения логина или пароля пользователя необходимо указать актуальные значения в конфигурационном файле в разделе подключения внутренней БД, см. 3.4

## 3 Конфигурирование

В конфигурационном файле сервера приложений необходимо указать активные съёмники и подключение к СУБД Продукта.

Съёмники указываются сгруппированные согласно "движку" - "greenplum6" (на основе JDBC подключения к СУБД) либо "http" (на основе http / https запроса).

Общая структура конфигурационного файла включает следующие атрибуты и ветви данных:

- traceLevel атрибут уровень логирования
- greenplum6 регистрации съёмников данных с СУБД Greenplum. Каждый ключ
   ID регистрации с подключением к конкретному кластеру и БД Greenplum, с одним или несколькими съёмниками "Ресурсные группы", "Размеры данных", "Температура данных"
- http регистрации съёмников данных с СУБД Greenplum. Каждый ключ ID регистрации с подключением к перечню хостов РХF, с одним или несколькими съёмниками "Метрики РХF"
- mstoolDb метаданные подключения к внутренней БД Продукта

### 3.1 Съёмники на основе движка "greenplum6"

Получение данных реализовано за счёт запросов с использованием JDBC подключения к Greenplum 6 или Greenplum 5 (совместим с обеими версиями).

Параметры подключения к должны включать атрибуты, указанные в Таблица 2

Таблица 2 Параметры подключения съёмников движка greenplum6

| Атрибут                   | Описание                                                                                                                     | Пример значения                                                                                |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| connection.host           | IP адрес или полное доменное название<br>сервера СУБД                                                                        | "postgres.ti-mstool"                                                                           |
| connection.port           | порт подключения к СУБД                                                                                                      | 5432                                                                                           |
| connection.username       | учётная запись пользователя СУБД                                                                                             | "ti_owner"                                                                                     |
| connection.password       | пароль пользователя СУБД                                                                                                     | "fe2520f302d96ccd64d29a8d907<br>d3cc0351f06c2fef5aa54475bb6d<br>743e8e4cf29d8f50d5c597ca6faa6" |
| connection.db             | название БД                                                                                                                  | "ti_mstool_db"                                                                                 |
| connection.timeout        | размер таймаута выполнения запроса к СУБД, в<br>секундах. Опционально, значение по<br>умолчанию 1200                         | 1200                                                                                           |
| connection.connectTimeout | Размер "таймаута" на подключение (открытие<br>сессии) к СУБД Greenplum, в секундах.<br>Опционально, значение по умолчанию 20 | 5                                                                                              |
| extractors                | Идентификаторы активных съёмников для<br>данного кластера Greenplum - один или<br>несколько.                                 | "resourcesGroup"<br>["resourcesGroup", "dataTemperature]                                       |

|                           | <ul> <li>Может принимать следующие варианты значений:</li> <li>строкой - если съёмник один и его настройки дефолтовые</li> </ul>                                                                                            | { "id": "dataTemperature", "schedule":<br>"1 * * * *" }                        |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
|                           | <ul> <li>JSON объектом - если съёмник один и его<br/>настройки переопределяются</li> <li>JSON массивом - строк или объектов</li> <li>Детально варианты пользовательских настроек<br/>описаны в подразделах ниже.</li> </ul> | ["resourcesGroup", { "id":<br>"dataTemperature", "schedule": "1 * * *<br>*" }] |
| additionalData.cluster_id | Идентификатор кластера СУБД Greenplum,<br>который будет отображаться в WebUI Продукта<br>для наблюдаемого кластера. Обязательный - с<br>этим идентификатором кластера данные далее<br>будут доступны в БД и WebUI           | "gp-01"                                                                        |
| isDisabled                | Опционально.<br>Признак игнорирования регистрации в<br>конфиге, false (по умолчанию) или (true).                                                                                                                            | true                                                                           |

Фрагмент конфига съёмников для одного подключения к СУБД Greenplum с настройками работы съёмников по умолчанию приведён в примере ниже:

| "greenplum6": |                                                                  |
|---------------|------------------------------------------------------------------|
| "ap6-r        | ea": {                                                           |
| 51 -          | "connection": {                                                  |
|               | "port": 5432,                                                    |
|               | "host": "10.20.30.40",                                           |
|               | "db": "dbname",                                                  |
|               | "user": "username",                                              |
|               | "password": "7b59795e"                                           |
|               | },                                                               |
|               | "additionalData": {                                              |
|               | "cluster id": "gp6-id"                                           |
|               | },                                                               |
|               | "extractors": [ "resourcesGroup", "dataTemperature", "dataSize"] |
| }             |                                                                  |
| }             |                                                                  |
|               |                                                                  |

## 3.1.1 Съёмник "Ресурсные группы"

В настройках ID съёмника - resourcesGroup.

Реализует снятие срезов данных о настройках ресурсных групп, включая:

- перечень и настройки системных групп лимиты, конкурентность
- характеристик утилизации ресурсов СРU и RAM на мастере и сегментах
- характеристики обработки запросов очередью сколько ожидает начала обработки, сколько обрабатывается, сколько суммарно обработано (накопленным итогом)

Штатная регулярность - каждую календарную минуту.

Полный атрибутный состав фиксируемых приведён в Таблица 3.

#### Таблица 3 атрибутный состав "сырых" данных съёмника resourcesGroup

| Название атрибута    | Описание                                                                                                                                                                                                                           |  |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| groupid              | ID PF                                                                                                                                                                                                                              |  |
| groupname            | Название РГ                                                                                                                                                                                                                        |  |
| concurrency          | Лимит кол-ва одновременно выполняемых запросов (настройка PF CONCURRENCY)                                                                                                                                                          |  |
| cpu_rate_limit       | Лимит (как доля) зарезервированной ёмкости СРU (настройка РГ СРU_RATE_LIMIT)                                                                                                                                                       |  |
| memory_limit         | Доля RAM на сегментах кластера, зарезервированная для PГ (настройка PГ МЕМОRY_LIMIT)                                                                                                                                               |  |
| memory_shared_quota  | Доля зарезервированной для РГ RAM, которая может быть выделена любой транзакции<br>РГ по необходимости (настройка РГ MEMORY_SHARED_QUOTA)                                                                                          |  |
| memory_spill_ratio   | Пороговая доля RAM сегмента, от RAM зарезервированной для PГ, которую может занять<br>один оператор транзакции - при превышении начинает использоваться Spill (настройка<br>PГ MEMORY_SPILL_RATIO)                                 |  |
| memory_auditor       | Используемое средство контроля памяти (настройка PГ MEMORY_AUDITOR)                                                                                                                                                                |  |
| cpuset               | Выделенные номера ядер CPU (настройка PГ CPUSET)                                                                                                                                                                                   |  |
| num_running          | Кол-во выполняемых запросов в отчётный момент времени                                                                                                                                                                              |  |
| num_queueing         | Кол-во ожидающих запросов в отчётный момент времени                                                                                                                                                                                |  |
| num_queued           | Суммарное кол-во запросов, которые побывали в очереди на ожидания с момента инициализации СУБД                                                                                                                                     |  |
| num_executed         | Суммарное кол-во выполнявшихся запросов с момента инициализации СУБД                                                                                                                                                               |  |
| total_queue_duration | Суммарная длительность нахождения запросов в очереди на ожидание, с момента инициализации СУБД                                                                                                                                     |  |
| cpu_usage            | утилизация CPU - как текст JSON с утилизацией CPU по мастеру и сегменту (как ключ<br>JSON):<br>- "-1" - мастер<br>- 0 и выше - сегменты                                                                                            |  |
| memory_usage         | утилизация RAM - текст JSON с показателями утилизацией RAM по мастеру и сегментам<br>(как ключ JSON):<br>- "-1" - мастер<br>- 0 и выше - сегменты<br>Впоженное значение - объект JSON - показатели выполения и утилизации областой |  |
|                      | RAM по ключам с названием показателя                                                                                                                                                                                               |  |

### Параметры пользовательской настройки съёмника resourcesGroup см. Таблица 4

Таблица 4 пользовательские настройки съёмника resourcesGroup

| Атрибут  | Описание                   | Пример значения |
|----------|----------------------------|-----------------|
| schedule | Расписание работы съёмника | "1 * * * *"     |

## 3.1.2 Съёмник "Температура данных"

В настройках ID съёмника - dataTemperature.

Реализует снятие данных значениях системных счётчиках для таблиц и партиций:

- кол-во обращений (сканирований) атомарных таблиц
- кол-во вставленных и удалённых строк
- данные о перекосе распределения записей (не удалённых регистраций) между сегментами (по кол-ву строк относительно среднего)
- дата-время последних выполнений VACUUM и ANALYZE (включая автоматический)
- данные о типе таблицы (строковая или колоночная)
- применение компрессии (тип и уровень компрессии.

Штатная регулярность - каждый день, запуск в 02:00:00.

#### Атрибутный состав приведён в Таблица 5

Таблица 5 атрибутный состав "сырых" данных съёмника dataTemperature

| Название           | Описание                                                     |
|--------------------|--------------------------------------------------------------|
| relid              | ID партиции                                                  |
| schemaname         | название схема таблицы                                       |
| tablename          | название таблицы                                             |
| partitiontablename | название таблицы партиции                                    |
| m_seq_scan         | кол-во сканирований - с мастера, только для не парт. таблицы |
| s_seq_scan         | среднее кол-во сканирований по сегментам                     |
| n_tup_ins          | суммарное кол-во добавления новых записей по всем сегментам  |
| n_tup_del          | суммарное кол-во удалений записей по всем сегментам          |
| n_live_tup         | суммарное кол-во живых тюплов (==записей) по всем сегментам  |
| n_dead_tup         | суммарное кол-во мёртвых тюплов по всем сегментам            |
| last_vacuum        | дата-время последнего VACUUM                                 |
| last_autovacuum    | дата-время последнего AUTOVACUUM                             |
| last_analyze       | дата-время последнего ANALYSE                                |
| last_autoanalyze   | дата-время последнего AUTOANALYSE                            |
| ao_flg             | Флаг - тип таблицы АО                                        |
| columnar_flg       | флаг - тип columnar                                          |

| Название      | Описание                                                         |
|---------------|------------------------------------------------------------------|
| compresstype  | тип компрессии                                                   |
| compresslevel | уровень компрессии                                               |
| skew_by_tup   | показатель перекоса распределения по живым tuple, доля от 0 до 1 |

#### Параметры пользовательской настройки съёмника dataTemperature см. Таблица 6

Таблица 6 пользовательские настройки съёмника dataTemperature

| Атрибут  | Описание                                                                                                                                                          | Пример значения                  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| schedule | Расписание работы съёмника                                                                                                                                        | "1 * * * *"                      |
| exclude  | Названия схем, исключаемых из собираемой информации. По умолчанию исключений нет                                                                                  | ["sch_nonpart_0", "sch_npart_0"] |
| include  | Названия схем, по которым собирается<br>информация. По умолчанию включены все<br>пользовательские схемы (т.е. кроме служебных -<br>включая системные справочники) | ["sch_nonpart_0", "sch_npart_0"] |

При необходимости фиксирования промежуточных значений внутри суток (чаще чем раз в сутки) - можно выставить, например, ежечасовую регулярность снятия данных. При этом производная витрина температуры будет заполнятся за отчётный период в сутки, значение на начало суток и на конец суток будут определяться как наиболее близкие по времени значения в пределах текущих / предыдущих суток отчётного периода. Это позволит видеть в витрине актуализируемые промежуточные значения температуры за текущие не завершённые сутки, и значения входящих атрибутов на начало суток.

#### 3.1.3 Съёмник "Размеры данных"

В настройках ID съёмника - dataSize.

Реализует снятие срезов данных о значениях системных счётчиков операций с таблицами и партициями таблиц:

- размер на мастере суммарно основной и дополнительной части, размер индексов
- размер на мастере основной части, дополнительной части, размер индексов
- перекос распределения данных на диске между сегментами (относительно среднего)
- данные о типе таблицы (строковая или колоночная)
- применение компрессии (тип и уровень компрессии
- массив значений перекоса на сегменте наиболее крупные (до 8)
- массив соответствующих значениями перекоса номеров сегментов

Штатная регулярность - каждый календарный день, в 02:05:00.

Детальный атрибутный состав фиксируемых данных приведён в Таблица 7

#### Таблица 7 атрибутный состав "сырых" данных съёмника dataSize

| Название                                                                                                                                                                                                  | Описание                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| relid                                                                                                                                                                                                     | ID партиции                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| schemaname                                                                                                                                                                                                | название схема таблицы                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| tablename                                                                                                                                                                                                 | название таблицы                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| partitiontablename                                                                                                                                                                                        | название таблицы партиции                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| master_main_add_size_b                                                                                                                                                                                    | размер данных таблицы / партиции на мастере - с MAIN, FSM и VM, AO и TOAST - но<br>без индексов                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| master_index_size_b                                                                                                                                                                                       | размер данных индексов таблицы / партиции на мастере                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| seg_main_size_b                                                                                                                                                                                           | суммарный размер основных данных таблицы / партиции на сегментах - MAIN, AO<br>и TOAST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| seg_add_size_b                                                                                                                                                                                            | суммарный размер дополнительных таблицы / партиции на сегментах - FSM, VM и<br>INIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| seg_index_size_b                                                                                                                                                                                          | суммарный размер индексов таблицы / партиции на сегментах                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| seg_main_skew_rate                                                                                                                                                                                        | перекос основных данных таблицы / партиции на сегментах, доля от 0 до 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| part_flg                                                                                                                                                                                                  | флаг того, что таблица партиционированная                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ao_flg                                                                                                                                                                                                    | флаг того, что таблица АО                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| columnar_flg                                                                                                                                                                                              | флаг того, что таблица columnar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| columnar_flg<br>compresstype                                                                                                                                                                              | флаг того, что таблица columnar<br>тип компрессии                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| columnar_flg<br>compresstype<br>compresslevel                                                                                                                                                             | флаг того, что таблица columnar<br>тип компрессии<br>уровень компрессии                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| columnar_flg<br>compresstype<br>compresslevel<br>files_cnt                                                                                                                                                | флаг того, что таблица columnar<br>тип компрессии<br>уровень компрессии<br>кол-во файлов данных                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| columnar_flg<br>compresstype<br>compresslevel<br>files_cnt<br>skew_seg_nums                                                                                                                               | флаг того, что таблица columnar<br>тип компрессии<br>уровень компрессии<br>кол-во файлов данных<br>массив номеров сегментов с перекосом более 2% от медианного (первые 24, от<br>максимального с убыванием)                                                                                                                                                                                                                                                                                                                                                                                    |
| columnar_flg<br>compresstype<br>compresslevel<br>files_cnt<br>skew_seg_nums<br>skew_seg_rates                                                                                                             | флаг того, что таблица columnar<br>тип компрессии<br>уровень компрессии<br>кол-во файлов данных<br>массив номеров сегментов с перекосом более 2% от медианного (первые 24, от<br>максимального с убыванием)<br>массив значений перекоса сегментов с перекосом более 2% от медианного (первые<br>8), от максимального с убыванием                                                                                                                                                                                                                                                               |
| columnar_flg<br>compresstype<br>compresslevel<br>files_cnt<br>skew_seg_nums<br>skew_seg_rates<br>segments_cnt                                                                                             | флаг того, что таблица columnar<br>тип компрессии<br>уровень компрессии<br>кол-во файлов данных<br>массив номеров сегментов с перекосом более 2% от медианного (первые 24, от<br>максимального с убыванием)<br>массив значений перекоса сегментов с перекосом более 2% от медианного (первые<br>8), от максимального с убыванием<br>кол-во сегментов в кластере                                                                                                                                                                                                                                |
| columnar_flg<br>compresstype<br>compresslevel<br>files_cnt<br>skew_seg_nums<br>skew_seg_rates<br>segments_cnt<br>segments_empty_cnt                                                                       | флаг того, что таблица columnar<br>тип компрессии<br>уровень компрессии<br>кол-во файлов данных<br>массив номеров сегментов с перекосом более 2% от медианного (первые 24, от<br>максимального с убыванием)<br>массив значений перекоса сегментов с перекосом более 2% от медианного (первые<br>8), от максимального с убыванием<br>кол-во сегментов в кластере<br>кол-во пустых сегментов - без данных этой таблицы                                                                                                                                                                           |
| columnar_flg<br>compresstype<br>compresslevel<br>files_cnt<br>skew_seg_nums<br>skew_seg_rates<br>segments_cnt<br>segments_empty_cnt<br>main_files_cnt                                                     | флаг того, что таблица columnar<br>тип компрессии<br>уровень компрессии<br>кол-во файлов данных<br>массив номеров сегментов с перекосом более 2% от медианного (первые 24, от<br>максимального с убыванием)<br>массив значений перекоса сегментов с перекосом более 2% от медианного (первые<br>8), от максимального с убыванием<br>кол-во сегментов в кластере<br>кол-во пустых сегментов - без данных этой таблицы<br>кол-во дата-файлов основной части таблицы на сегментах (без индексов, FSM, VM,<br>INIT частей)                                                                         |
| columnar_flg         compresstype         compresslevel         files_cnt         skew_seg_nums         skew_seg_rates         segments_cnt         segments_empty_cnt         main_files_cnt         tbs | флаг того, что таблица columnar         тип компрессии         уровень компрессии         кол-во файлов данных         массив номеров сегментов с перекосом более 2% от медианного (первые 24, от максимального с убыванием)         массив значений перекоса сегментов с перекосом более 2% от медианного (первые 8), от максимального с убыванием         кол-во сегментов в кластере         кол-во пустых сегментов - без данных этой таблицы         кол-во дата-файлов основной части таблицы на сегментах (без индексов, FSM, VM, INIT частей)         название табличного пространства |

Параметры пользовательской настройки съёмника dataSize см. Таблица 8

#### Таблица 8 пользовательские настройки съёмника dataSize

| Атрибут  | Описание                                                                                                                                                          | Пример значения                  |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|
| schedule | Расписание работы съёмника                                                                                                                                        | "1 * * * *"                      |  |
| exclude  | Названия схем, исключаемых из собираемой информации. По умолчанию исключений нет                                                                                  | ["sch_nonpart_0", "sch_npart_0"] |  |
| include  | Названия схем, по которым собирается<br>информация. По умолчанию включены все<br>пользовательские схемы (т.е. кроме служебных -<br>включая системные справочники) | ["sch_nonpart_0", "sch_npart_0"] |  |

## 3.2 Съёмники на основе движка "http"

Съёмники выполняют http/https запрос, выполняют разбор ответа - согласно формату JSON либо формату Prometheus экспортера.

Параметры подключения к источнику должны включать либо один источник, либо массив сточников. Каждый источник описывается объектом, который должен включать атрибуты, указанные в Таблица 9

| Таблица 9 Параметры подключения съёмников | движка I | http |
|-------------------------------------------|----------|------|
|-------------------------------------------|----------|------|

| Атрибут                   | Описание                                                                                                                                                                                                                                                                                                                                                                                                                         | Пример значения                                                                                                                                     |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| connection                | Настройки подключения к источнику - один<br>объект или массив объектов. см Таблица 10                                                                                                                                                                                                                                                                                                                                            | { "host": "192.168.10.20", "port": 5432}<br>или<br>[<br>{"host": "192.168.10.21", "port":<br>5432},<br>{"host": "192.168.10.22", "port": 5432}<br>] |
| extractors                | <ul> <li>Идентификаторы активных съёмников для данного кластера Greenplum - один или несколько.</li> <li>Может принимать следующие варианты значений:</li> <li>строкой - если съёмник один и его настройки дефолтовые</li> <li>JSON объектом - если съёмник один и его настройки переопределяются</li> <li>JSON массивом - строк или объектов Детально варианты пользовательских настроек описаны в подразделах ниже.</li> </ul> | "pxfPrometheus"<br>или<br>{ "id": "pxfPrometheus", "schedule":<br>"*/20 * * * * * * }                                                               |
| additionalData.cluster_id | Идентификатор кластера СУБД Greenplum,<br>который будет отображаться в WebUI Продукта<br>для наблюдаемого кластера. Обязательный - с<br>этим идентификатором кластера данные далее<br>будут доступны в БД и WebUI                                                                                                                                                                                                                | "gp-01"                                                                                                                                             |
| isDisabled                | Опционально.                                                                                                                                                                                                                                                                                                                                                                                                                     | true                                                                                                                                                |

| Признак игнорирования регистрации в конфиге,<br>false (по умолчанию) или (true). |
|----------------------------------------------------------------------------------|
|                                                                                  |

## Для удобства конфигурирования для http движка можно указать один или несколько источников, атрибуты см. Таблица 10

Таблица 10 Атрибуты объекта подключения к источнику для движка http

| Атрибут | Описание                                           | Пример значения |
|---------|----------------------------------------------------|-----------------|
| host    | IP адрес или полное доменное название сервера СУБД | "192.168.10.21" |
| port    | порт подключения к СУБД                            | 5432            |

## Все съёмники значений метрик на основе НТТР подключения сохраняют данные атрибутным составом, указанным в Таблица 11

Таблица 11 Атрибуты данных съёмников метрик на основе НТТР подключения

| Название атрибута | Описание                                                          |
|-------------------|-------------------------------------------------------------------|
| extractor_id      | ID съёмника                                                       |
| reg_id            | ID регистрации съёмника                                           |
| metric            | ID (название) метрики                                             |
| params            | Строка тегов и значений, для которых фиксируется значение метрики |
| value             | Значение метрики                                                  |
| ts                | Отчётный период времени (дата)                                    |
| ts_insert         | Системный момент времени вставки записи в таблицу                 |

Фрагмент конфига съёмников для одного подключения к СУБД Greenplum с настройками работы съёмников по умолчанию приведён в примере ниже:



## 3.2.1 Съёмник "Метрики РХF"

В настройках ID съёмника - pxfPrometheus.

Штатная регулярность - каждые 15 секунд.

Снимает значения метрик мониторинга РХF с группы хостов (по умолчанию - сегментов), включая метрики, указанные в Таблица 12.

#### Таблица 12 Метрики и фильтры съёмника pxfPrometheus

| Название / маска названия метрики         | Фильтр по маске строки значений тегов |
|-------------------------------------------|---------------------------------------|
| tomcat_sessions_expired_sessions_total    |                                       |
| jvm_memory_max_bytes                      |                                       |
| jvm_gc_pause_seconds_*                    |                                       |
| tomcat_global_error_total                 |                                       |
| jvm_threads_states_threads                |                                       |
| process_cpu_usage                         |                                       |
| jvm_threads_peak_threads                  |                                       |
| tomcat_sessions_rejected_sessions_total   |                                       |
| log4j2_events_total                       | *level="fatal"*                       |
| tomcat_connections_config_max_connections |                                       |
| tomcat_threads_config_max_threads         |                                       |
| executor_active_threads                   |                                       |
| application_started_time_seconds          |                                       |
| executor_pool_size_threads                |                                       |
| tomcat_sessions_alive_max_seconds         |                                       |
| tomcat_connections_current_connections    |                                       |
| tomcat_sessions_active_max_sessions       |                                       |
| executor_pool_core_threads                |                                       |
| pxf_bytes_sent_total                      |                                       |
| tomcat_sessions_active_current_sessions   |                                       |
| jvm_threads_live_threads                  |                                       |

## Параметры пользовательских настроек съёмника pxfPrometheus см. Таблица 13

Таблица 13 пользовательские настройки съёмника pxfPrometheus

| Атрибут  | Описание                                                                                                               | Пример значения |
|----------|------------------------------------------------------------------------------------------------------------------------|-----------------|
| schedule | Расписание работы съёмника                                                                                             | "1 * * * *"     |
| filter   | Сохраняемые метрики с учётом<br>значений тегов, массив строк<br>и/или объектов. Должны<br>принимать варианты значений: | ["*"]<br>или    |

| Атрибут  | Описание                                                                                                 | Пример значения                                                                                                                                                                                    |
|----------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | строка с названием или маской<br>названия метрики (в качестве<br>"другие символы" указывать<br>символ *) | [ "pxf_records_sent_total", "pxf_bytes_sent_total" ]                                                                                                                                               |
|          | объект с атрибутами: названием<br>или маской названия метрики,<br>маской строки тегов                    | или                                                                                                                                                                                                |
|          | Символ двойной кавычки для<br>строки значений тегов<br>указывается как \" (с                             | [ "pxf_*_sent_total" ]                                                                                                                                                                             |
|          | маскированием спец. символа)                                                                             | или                                                                                                                                                                                                |
|          |                                                                                                          | [<br>{ "value": "pxf_records_sent_*", "tag": "*segment=\"0\"*" },<br>{ "value": "pxf_records_sent_*", "tag": "*segment=\"2\"*" },<br>{ "value": "pxf_bytes_sent_total", "tag": "*segment=\"5\"*"}, |
|          |                                                                                                          | { "value": "pxf_bytes_sent_total", "tag": "*segment=\"6\"*"}<br>]                                                                                                                                  |
| protocol | Протокол, http (по умолчанию)<br>или https                                                               | "https"                                                                                                                                                                                            |
| path     | Путь (составляющая URL)                                                                                  | "/actuator/prometheus"                                                                                                                                                                             |
| method   | Метод http запроса                                                                                       | "get"                                                                                                                                                                                              |
| timeout  | Размер "таймаута" при http<br>обращении, в секундах.<br>Опционально, значение по<br>умолчанию 15         | 10                                                                                                                                                                                                 |

## 3.3 Уровень журналирования (логирования)

Для целей диагностики работы можно указать конкретный уровень детализации сообщений.

| traceLevel | Уровень логирования:                                                                                                                                                                  | 1 |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|            | 0 - INFO - минимальный уровень детализации, выводится<br>только информационные сообщения                                                                                              |   |
|            | 1 - ERROR - выводит дополнительно к предыдущему уровню<br>все сообщения об ошибках                                                                                                    |   |
|            | 2 - WARNING - выводит дополнительно к предыдущему<br>уровню все сообщения предупреждений                                                                                              |   |
|            | 3 - TRACE - максимальный уровень детализации, выводит<br>дополнительно к предыдущему уровню все сообщения<br>трассировки (фактически выводит сообщения всех<br>предусмотренных типов) |   |

#### Фрагмент конфига:

```
"traceLevel": 1
```

## 3.4 Реквизиты подключения к БД Продукта

Собираемые сервером приложений данные сохраняются в БД, реквизиты подключения к БД формируются автоматически, описаны в Таблица 14

Таблица 14 Параметры конфиг-файла для подключения к БД Продута

| Атрибут                 | Описание                                                                                                                    | Пример значения      |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------|
| mstoolDb.port           | Порт подключения к СУБД Postgres / Citus. Обязательный<br>для настройки                                                     | 5432                 |
| mstoolDb.host           | Хост подключения к СУБД Postgres / Citus. Обязательный<br>для настройки                                                     | "postgres.ti-mstool" |
| mstoolDb.db             | БД подключения к СУБД Postgres / Citus. Обязательный для<br>настройки                                                       | "ti_mstool_db"       |
| mstoolDb.user           | Учётная запись пользователя СУБД Postgres / Citus.<br>Обязательный для настройки                                            | "ti_owner"           |
| mstoolDb.password       | Пароль подключения к СУБД Postgres / Citus, в<br>зашифрованном виде. Обязательный для настройки, см. п.<br>Шаг 4            | "fec8"               |
| mstoolDb.timeout        | Размер "таймаута" при выполнении операций в СУБД<br>Продукта, в секундах. Опционально, значение по<br>умолчанию 600         | 1200                 |
| mstoolDb.connectTimeout | Размер "таймаута" на подключение (открытие сессии) к<br>СУБД Продукта, в секундах. Опционально, значение по<br>умолчанию 20 | 2                    |

Фрагмент конфига для описания подключения к внутренней БД:

```
"mstoolDb": {
    "port": 5432,
    "host": "postgres.ti-mstool",
    "db": "ti_mstool_db",
    "user": "ti_owner",
    "password": "7859...490a"
}
```

## 4 Приложения

## 4.1 Пример конфиг-файла на два кластера GP и один кластер PXF

Пример конфига для следующей ситуации:

- два кластера Greenplum, доступные по хостам первый "10.20.0.10" и второй "10.20.1.100"
- у первого кластера есть кластер РХF, развёрнутый на хостах "10.20.0.11" и "10.20.0.12"
- мониторинг для второго кластера временно отключен атрибут "isDisabled": true
- для первого кластера указано использование трёх съёмников с кастомными настройками:
  - ресурсные группы регулярности сбора данных каждые 15 секунд
  - температуры данных сбор каждые 4 часа с запуском в 2 минуты календарного часа, только для таблицы схем "schema01" и "schema02"
  - размер данных сбор каждые сутки с запуском в 2 часа 5 минут календарного времени по системной временной зоне сервера приложений, из всех пользовательских схем данных за исключением схемы "schema05"
- для первого кластера указано использование одного съёмника "Ресурсные группы" с дефолтовыми настройками работы



TI MS Tool Установка программного обеспечения

Tera

Integrow

```
"isDisabled": true,
                          "connection": {
    "port": 5432,
    "host": "10.20.1.100",
                                       "db": "db2",
                                      "user": "userdemo",
"password": "2adcgw440f1"
                          },
"additionalData": {
    "-luster id"
                                      "cluster_id": "gp6-2"
                          },
                          "extractors": "resourcesGroup"
              }
},
"http": {
    "gp6-1-pxf": {
        "isDisa
                          "isDisabled": false,
                          "connection": [
                                      {
                                                   "host": "10.20.0.11",
"port": 5888
                                       },
                                       {
                                                   "host": "10.20.0.12",
"port": 5888
                                       }
                          ],
                          "additionalData": {
    "cluster_id": "gp6-1"
                          },
                          "extractors": "pxfPrometheus"
             }
},
"mstoolDb": {
            Db": {
  "port": 5432,
  "host": "postgres.ti-mstool",
  "db": "ti_mstool_db",
  "user": "ti_owner",
  "password": "3edcdb5",
  "timeout": 1200
}
```